On the Degrees of Freedom of Full-Duplex Cellular Networks

نویسندگان

  • Minho Yang
  • Sang-Woon Jeon
  • Dong Ku Kim
چکیده

Full-duplex (FD) cellular networks are considered in which a FD base station (BS) simultaneously supports a set of half-duplex (HD) downlink (DL) users and a set of HD uplink (UL) users. The transmitter and the receiver of the BS are equipped with reconfigurable antennas, each of which can choose its transmit or receive mode from several preset modes. Under the no self-interference assumption arisen from FD operation at the BS, the sum degrees of freedom (DoF) of FD cellular networks is investigated for both no channel state information at the transmit side (CSIT) and partial CSIT. In particular, the sum DoF is completely characterized for the no CSIT model and an achievable sum DoF is established for the partial CSIT model, which improves the sum DoF of the conventional HD cellular networks. For both the no CSIT and partial CSIT models, the results show that the FD BS with reconfigurable antennas can double the sum DoF even in the presence of user-to-user interference as both the numbers of DL and UL users and preset modes increase. It is further demonstrated that such DoF improvement indeed yields the sum rate improvement at the finite and operational signal-to-noise ratio regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Joint Sub-channel Allocation, Duplexing Mode Selection, and Power Control in Full-Duplex Co-Channel Femtocell Networks

As one of the promising approaches to increase the network capacity, Full-duplex (FD) communications have recently gained a remarkable attention. FD communication enables wireless nodes to simultaneously send and receive data through the same frequency band. Thanks to the recent achievements in the self-interference (SI) cancellation, this type of communication is expected to be potentially uti...

متن کامل

Relay-Aided MIMO Cellular Networks Using Opposite Directional Interference Alignment

In this paper, we propose an interference alignment (IA) scheme for the multiple-input multipleoutput (MIMO) uplink cellular network with the help of a relay which operates in half-duplex mode. The proposed scheme only requires global channel state information (CSI) knowledge at the relay, with no transmitter beamforming and time extension at the user equipment (UE), which differs from conventi...

متن کامل

Spatial Self-Interference Isolation for In-Band Full-Duplex Wireless: A Degrees-of-Freedom Analysis

The challenge to in-band full-duplex wireless communication is managing self-interference. Many designs have employed spatial isolation mechanisms, such as shielding or multi-antenna beamforming, to isolate the self-interference wave from the receiver. Such spatial isolation methods are effective, but by confining the transmit and receive signals to a subset of the available space, the full spa...

متن کامل

Toward Full-Duplex Multihop Multiflow - A Study of Non-Layered Two Unicast Wireless Networks

Starting from the elemental 2 × 2 × 2 interference channel, there has been much progress in the understanding of multihop multiflow wireless networks through degrees of freedom (DoF) studies that have produced important ideas such as (aligned) interference neutralization. However, much of this progress has been limited to layered connectivity models that are essentially motivated by the assumpt...

متن کامل

Relay-aided Interference Alignment in Wireless Networks

Resource management in wireless networks is one of the key factors in maximizing the overall throughput. Contrary to popular belief, dividing the resources in a dense network does not yield the best results. A method that has been developed recently shares the spectrum amongst all the users in such a way that each node can potentially utilize about half of all the available resources. This new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1604.07957  شماره 

صفحات  -

تاریخ انتشار 2016